Implementation of high-order implicit runge-kutta methods
نویسندگان
چکیده
منابع مشابه
GPU Implementation of Implicit Runge-Kutta Methods
Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...
متن کاملHigh Order Runge { Kutta Methods on Manifolds
This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.
متن کاملPreconditioning and Parallel Implementation of Implicit Runge-kutta Methods
A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...
متن کاملHigh Order Multisymplectic Runge-Kutta Methods
We study the spatial semidiscretizations obtained by applying Runge–Kutta (RK) and partitioned Runge–Kutta (PRK) methods to multisymplectic Hamiltonian partial differential equations. These methods can be regarded as multisymplectic hp-finite element methods for wave equations. All the methods we consider are multisymplectic; we determine their properties with regard to existence of solutions, ...
متن کاملPreconditioning of implicit Runge-Kutta methods
A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2001
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(00)00335-7